The AMD Kabini Review: A4-5000 APU Tested
by Jarred Walton on May 23, 2013 12:00 AM ESTAnand is covering AMD’s latest Kabini/Temash architecture in a separate article, but here we get to tackle the more practical question: how does Kabini perform compared to existing hardware? Armed (sorry, bad pun) with a prototype laptop sporting AMD’s latest APU, we put it through an extensive suite of benchmarks and see what’s changed since Brazos, how Kabini stacks up against Intel’s current ULV offerings, and where it falls relative to ARM offerings and Clover Trail. But first, let’s talk about what’s launching today.
AMD has a three-pronged assault going out today: at the bottom (in terms of performance) is their 2013 AMD Elite Mobility Platform, formerly codenamed Temash. The main subject of this review is the newly christened 2013 AMD Mainstream APU Platform, aka Kabini. And at the higher end of the spectrum we’re also getting the Richland update to Trinity, which AMD is calling their 2013 Elite Performance APU Platform. We’ll cover all of these with Pipeline pieces, but here’s the overview of the Kabini parts:
In total there are five new Kabini APUs launching: one 25W part, three 15W parts, and one 9W offering. The hardware is the same from the architectural side of things, with the A-Series parts coming with four Jaguar CPU cores and supporting DDR3L-1600 while the E-Series will be dual-core with DDR3L-1333 on two of the models and DDR3L-1600 on the highest performance option. The GPUs in all cases will be fully enabled 128 core GCN architecture parts, but clock speeds range from 300MHz on the 9W part up to 600MHz on the 25W part, with the 15W parts filling in at clocks of 400-500MHz.
AMD provided plenty of material to discuss, and as usual there’s a lot of marketing material that we don’t need to get into too much. For those of you that want to see the AMD slides, though, here’s the full Kabini presentation gallery. Or if you're really interested, I've put the full 2013 Mobility Platforms deck into our galleries.
130 Comments
View All Comments
takeship - Thursday, May 23, 2013 - link
True, price will keep most budget buyers out of Haswell powered ultrabooks. Not so for the now-on-clearance-sale Ivy Bridge Dell & HPs though. And in that market Kabini loses most of it's price advantage, while still giving worse performance & marginal battery life improvements. There it's the new $500 plastic Kabini laptop, vs. the $600 aluminum IVB Lenovo. I just don't see that being a win.Gaugamela - Thursday, May 23, 2013 - link
The HP Pavilion 11 Touchsmart costs 400$. It has a 10-point touchscreen. So, the 400$ touch enabled Kabini seems mighty atractive compared to the 600$ Lenovo now.axien86 - Thursday, May 23, 2013 - link
Touche! Thanks to AMD for providing alternatives to Intel's Atoms and higher priced CPUs.
kyuu - Thursday, May 23, 2013 - link
Besides the price issue, you seem to be quite missing the point of a low-power architecture like Jaguar. Let me know when ULV Ivy Bridge can scale down to 3.9W.Also, a lot of people seem to have trouble comprehending the fact that TDP doesn't really have much in common with the actual power draw of the chip (or the heat output). We've already seen what happens when you try to cram even the lowest wattage Ivy Bridge into a modern tablet form factor: high temperatures w/ fans, low battery life, high price.
Gaugamela - Thursday, May 23, 2013 - link
It competes with an Sandy Bridge ULV i3 and it gets quite close to a i3 Ivy, while offering better battery life.Seems like a clear proposition to me: if Pentium like performance is what you need this offers you that and better GPU performance. Perfect for the low-end of the ultrathin/ultrabook market.
andrewaggb - Thursday, May 23, 2013 - link
yeah, pretty much how I read it as well. Assuming you can afford to pay an extra $200 dollars there's not much reason (other than possibly graphics drivers) to not get haswell instead.aryonoco - Thursday, May 23, 2013 - link
Very interesting article. Just a few notes:I'm not sure that Exynos 5250 is the best representative of Cortex A15. For one, it's dual core without any HT so at a massive disadvantage in a test like Kraken. Secondly, it came out in actual device in the market about 7 months ago. By the time Kabini shows in products, it will probably be over 8 months later. We'll have other Cortex A15 parts by then, and if the Tegra 4 Kraken scores that I'm hearing (~6000) is right, and if something Tegra 4 is using about half as much power as this 15W Kabini, then Kabini suddenly doesn't look that competitive.
Of course as you say, the success of Kabini will depend on what OEMs do with it, but traditionally these cheap AMD parts find themselves in devices that are compromised in everyway. Even if we get a 1080p screen this time around (which I'm hopeful), we'll still have to deal with sub-optimal keyboards, trackpads that work only half the time, and other cost-cutting measures we are familiar with. For this to succeed, someone needs to put it in a Ultrabook-style laptop, with good display, good keyboard and no software glitches, and price it under $500. That's a tall task.
HP just announced a very interesting Slatebook X2 running Android (not skinned) on Tegra 4 with 1080p IPS screen and a Transformer-style detachable dock for $479, including the dock (sidenote, I was disappointed there was no coverage of this on AT). If the performance claims for Tegra 4 (and other future more optimized Cortex A15 parts) are accurate, with such devices on the horizon, will there even be a cheap Ultrabook-style market left for Kabini to compete in? Can Kabini find its way into similar designs by major OEMs? I hope, for everyone's sake that AMD can succeed, but I am doubtful.
JarredWalton - Thursday, May 23, 2013 - link
I certainly think Kabini can go into the same designs that we're seeing Tegra 4 target. Which will end up being faster? That's a different question, and I'm not sure we have enough information to come to a conclusion right now. If Kabini/Temash can get into tablets sooner rather than later, they've got a chance. If it takes 6-8 months, you're right: it may not matter at that point.Gaugamela - Thursday, May 23, 2013 - link
HP just announced their back to school products and there is a successor to the HP dm1 that will cary A4's and A6's.Exophase - Friday, May 24, 2013 - link
No Cortex-A15 has HT, and Kraken is single threaded anyway. I think Kraken just isn't a great benchmark. Although its makers say it's a lot better than Sunspider it shares a lot of the same sorts of problems:1) It's Javascript which has its own unique (pretty severe) overheads which can dominate run-time to the extent that it drowns out a lot of the variation from the type of JS code you're running. JS is used and it's important, but even today on good JITs most JS code is several times (think 5 times) slower than an equivalent written in something like C++ or even Java, making it a bad representation of performance of more efficient software.
2) Much of what it does - path finding, signal processing, and crypto - is not the kind of stuff Javascript is usually used for.
3) Its test durations are really short, which is bad for benchmarks in general but can be especially bad for JITs where it
4) The variation in current browsers is extreme (http://arstechnica.com/civis/viewtopic.php?f=8&... where you can see some tests are substantially faster and others substantially slower. This again highlights the big overheads of Javascript and the impact of different JIT strategies, but also that the state of performance is still pretty volatile. A similar sort of variation could manifest between different backends (ie, x86 vs ARM) even for the same browser.
Cross-architecture comparisons are hard and I don't blame people for using JS when there's not a lot else available (although at least some other inclusions would be nice).. but you shouldn't draw a very broad conclusion from a Kraken comparison alone. And if you did that it'd also make the Kabini vs i5 comparison look a lot worse than a lot of other tests show.