When we first looked at the Opteron 6276, our time was limited and we were only able to run our virtualization, compression, encryption, and rendering benchmarks. Most servers capable of running 20 or more cores/threads target the virtualization market, so that's a logical area to benchmark. The other benchmarks either test a small part of the server workload (compression and encryption) or represent a niche (e.g. rendering), but we included those benchmarks for a simple reason: they gave us additional insight into the performance profile of the Interlagos Opteron, they were easy to run, and last but not least those users/readers that use such applications still benefit.

Back in 2008, however, we discussed the elements of a thorough server review. Our list of important areas to test included ERP, OLTP, OLAP, Web, and Collaborative/E-mail applications. Looking at our initial Interlagos review, several of these are missing in action, but much has changed since 2008. The exploding core counts have made other bottlenecks (memory, I/O) much harder to overcome, the web application that we used back in 2009 stopped scaling beyond 12 cores due to lock contention problems, the Exchange benchmark turned out to be an absolute nightmare to scale beyond 8 threads, and the only manageable OLTP test—Swingbench Calling Circle—needed an increasing number of SSDs to scale.

The ballooning core counts have steadily made it harder and even next to impossible to benchmark applications on native Linux or Windows. Thus, we reacted the same way most companies have reacted: we virtualized our benchmark applications. It's only with a hypervisor that these multi-core monsters make sense in most enterprises, but there are always exceptions. Since quite a few of our readers still like seeing "native" Linux and Windows benchmarks, not to mention quite a few ERP, OLTP, and OLAP servers are still running without any form of virtualization, we took the time to complete our previous review and give the Opteron Interlagos another chance.

Benchmark Configuration
Comments Locked

46 Comments

View All Comments

  • sonofgodfrey - Thursday, February 9, 2012 - link

    Have you explicitly tested one socket vs. two sockets? We've found an immense increase in contention once a cache-line has to be shared between sockets on some systems.
  • JohanAnandtech - Friday, February 10, 2012 - link

    That is one suggestion I will try out next week. Thanks!
  • Klimax - Thursday, February 9, 2012 - link

    Hello.

    Nice tests.

    However I would like to see MySQL tested on Windows Server 2008 R2
    Would be interesting comparsion.

    (Especially due to http://channel9.msdn.com/shows/Going+Deep/Arun-Kis... )
  • Klimax - Thursday, February 9, 2012 - link

    Title of post is wrong... (I have deleted second thing and forgot to fix title)
  • Scali - Thursday, February 9, 2012 - link

    Unless I'm mistaken, the Xeon 5650 is a 1.17B transistor chip, where the Interlagos 6276 is a 2.4B transistor chip.
    In that light, doesn't that make Intel's SMT implementation a lot better than CMT?
    I mean, yes CMT may give more of a performance boost when you increase the threadcount. But considering the fact that AMD spends more than twice the number of transistors on the chip... well, that's pretty obvious.
    AMD might as well just have used conventional cores.
    The true strength of SMT is not so much that it improves performance in multithreaded scenarios, but that it does so at virtually no extra cost in terms of transistors (and with little or no impact on the single-threaded performance either).
  • JohanAnandtech - Friday, February 10, 2012 - link

    Interlagos is 1.2 billion chip (maybe 1.3 but anyway). Most of those transistors are spend on the L3 cache: about 0.5 billion. Only 213 million transistors are in a module and each module contains a 2 MB L2-cache, probably good for 120 million transistors. That leaves 90 million transistors to the core, and it has been stated that the second cluster added 12%. So that second cluster costs about 12 million transistors, or 48 million on the total 4 module die. That is less than 5% of the total transistor count but you get a 30-90% performance boost!

    So for AMD, this was clearly a great choice.

    SMT is perfect for Intel, as the Intel architecture puts all instructions in one big ROB.

    For very low IPC serverworkloads, I think the CMT approach gives better results. Unfortunately AMD lowered some of the CMT benefits by keeping the datacache so small and the low associativity of the Icache.
  • Scali - Friday, February 10, 2012 - link

    Uhhh, I think you're wrong here... the 4-module Bulldozer is a 1.2B chip (Zambezi). But you tested the 8-module Interlagos (16 threads), which is TWO Zambezi dies in one package.
    Hence 2*1.2 = 2.4B transistors.
  • JohanAnandtech - Friday, February 10, 2012 - link

    Ok, it is two chips of 1.2 billion. That doesn't change anything about our analyses of CMT.
  • Scali - Friday, February 10, 2012 - link

    Not in the article, because you did not factor in transistor count (which is the flaw I tried to point out in the first place... comparing two chips, where once is twice the transistor count of the other, is quite the apples-to-oranges comparison. One would expect a chip with twice the transistorcount to be considerably better in multithreading scenarios, not 'catching up' to the smaller chip).

    But in your above post, I think it changes everything about your analysis. All your figures have to be done times two.
    Which makes it a very poor comparison, not only to Intel, but also to AMD's own previous line of CPUs.
    The 6174 Magny Cours is actually beating Interlagos, with 'only' 12 threads, no kind of CMT/SMT, and 'only' 1.8B transistors.

    How does that make CMT look like a great choice for AMD?
  • slycer.tech - Friday, February 10, 2012 - link

    What i read on benchmark configuration page, Anand used 2x Intel Xeon X5650. So 2x 1.17B = 2.34B. I think it is comparable to AMD CPU used in this test. Am I right?

Log in

Don't have an account? Sign up now