We’ve just returned from sunny Bellevue, Washington, where AMD held their first Fusion Developer Summit (AFDS). As with other technical conferences of this nature such as NVIDIA’s GTC and Intel’s IDF, AFDS is a chance for AMD to reach out to developers to prepare them for future products and to receive feedback in turn. While AMD can make powerful hardware it’s ultimately the software that runs on it that drives sales, so it’s important for them to reach out to developers to ensure that such software is being made.

AFDS 2011 served as a focal point for several different things going on at AMD. At its broadest, it was a launch event for Llano, AMD’s first mainstream Fusion APU that launched at the start of the week. AMD has invested the future of the company into APUs, and not just for graphical purposes but for compute purposes too. So Llano is a big deal for the company even though it’s only a taste of what’s to come.

The second purpose of course was to provide sessions for developers to learn more about how to utilize AMD’s GPUs for compute and graphics tasks. Microsoft, Acceleware, Adobe, academic researchers, and others were on hand to provide talks on how they’re using GPUs in current and future projects.

The final purpose – and what is going to be most interesting to most outside observers – was to prepare developers for what’s coming down the pipe. AMD has big plans for the future and it’s important to get developers involved as soon as is reasonably possible so that they’re ready to use AMD’s future technologies when they launch. Over the next few days we’ll talk about a couple of different things AMD is working on, and today we’ll start with the first and most exciting project: AMD Graphics Core Next.

Graphics Core Next (GCN) is the architectural basis for AMD’s future GPUs, both for discrete products and for GPUs integrated with CPUs as part of AMD’s APU products. AMD will be instituting a major overhaul of its traditional GPU architecture for future generation products in order to meet the direction of the market and where they want to go with their GPUs in the future.

While graphics performance and features have been and will continue to be important aspects of a GPU’s design, AMD and the rest of the market have been moving towards further exploiting the compute capabilities of GPUs, which in the right circumstances are capable of being utilized as massive parallel processors that can complete a number of tasks in the fraction of the time as a highly generalized CPU. Since the introduction of shader-capable GPUs in 2002, GPUs have slowly evolved to become more generalized so that their resources can be used for more than just graphics. AMD’s most recent shift was with their VLIW4 architecture with Cayman late last year; now they’re looking to make their biggest leap yet with GCN.

GCN at its core is the basis of a GPU that performs well at both graphical and computing tasks. AMD has stretched their traditional VLIW architecture as far as they reasonably can for computing purposes, and as more developers get on board for GPU computing a clean break is needed in order to build a better performing GPU to meet their needs. This is in essence AMD’s Fermi: a new architecture and a radical overhaul to make a GPU that is as monstrous at computing as it is at graphics. And this is the story of the architecture that AMD will be building to make it happen.

Finally, it should be noted that the theme of AFDS 2011 was heterogeneous computing, as it has become AMD’s focus to get developers to develop heterogeneous applications that effectively utilize both AMD’s CPUs and AMD’s GPUs. Ostensibly AFDS is a conference about GPU computing, but AMD’s true strength is not their CPU side or their GPU side, it’s the combination of the two. Bulldozer will be the first half of AMD’s future APUs, while GCN will be the other half.

Prelude: The History of VLIW & Graphics
Comments Locked

83 Comments

View All Comments

  • ClagMaster - Tuesday, June 21, 2011 - link

    What is being describe is tantamont Vector Processing that was featured on CRAY supercomputers available in the 70's through 90's. In the machines I once programmed (using CFT77 compiler), a vector was 64 64-bit words that was processed through a pipe.
  • 789427 - Thursday, June 23, 2011 - link

    Is it just me, or will we be seeing AMD refresh cycles quadruple for their processors because of on-die graphics?

    I sense a prefix/suffix CPU/GPU diversification happening soon - and a bit of confusion with maybe some sideport memory enabled chips coming our way.

    2/4/8 cores with
    6550, 6750, 6850 level graphics and
    512Mb/1Gb sideport
    all for $100-$200 and crossfire capable?
    Drool now?
    cb
  • Kakkoii - Sunday, August 21, 2011 - link

    This pleases me, because this will likely mean that AMD no longer has such a performance per dollar and watt difference from Nvidia. Thus further degrading most arguments AMD fanboys have against Nvidia. I see this being a benefit for Nvidia in the long term. After AMD claiming what Nvidia was doing wasn't right, they basically give up and are doing it themselves now too.
  • Cyber.Angel - Saturday, October 15, 2011 - link

    exactly what I was thinking
    AMD/ATI is catching up - in the HPC sector
    otherwise they are still a better buy in the consumer market
    and in 2012 also in HPC
    Nvidia uses too much power

    too bad if even Trinity is not using this new GPU design...
  • Wreckage - Wednesday, December 21, 2011 - link

    I'm guessing we won't see product until sometime next year.
  • tzhu07 - Wednesday, December 21, 2011 - link

    Looking forward to buying a 7970 (or possibly a 7950) to go along with my Sandy Bridge build. I'm currently running on Intel HD3000 and it's killing me. But just a few more days now. Hopefully I can hit the refresh button on my browser fast enough to catch one before they sell out.
  • OwnedKThxBye - Thursday, December 22, 2011 - link

    Typo on the last page. At no point has AMD specified when a GPU will appear using GCN will appear, so it’s very much a guessing game.
  • R3MF - Thursday, December 22, 2011 - link

    "We expect AMD to take a page from NVIDIA here and configure lower-end consumer parts to use the slower rates since FP64 is not currently important for consumer uses."

    Will AMD be likewise crippling the FP64 support native to the chip, in products that have the resident features, if they are sold in a consumer SKU rather than a more expensive professional SKU?

    I refer to nvidia's practice of crippling access to FP64 functionality in Geforce 580 cards that is otherwise available in Tesla 580 products.
  • zarck - Thursday, December 22, 2011 - link

    For the GPGPU GRID, a test with Radeon 7970 and Folding@Home it's possible ?

    https://fah-web.stanford.edu/projects/FAHClient/wi...
  • morricone - Thursday, December 22, 2011 - link

    I'm a developer myself and you have to look really hard to find an article as good as this. Keep this stuff up!

Log in

Don't have an account? Sign up now